Udemy – Neural Networks in Python from Scratch Complete guide

0

Get real time updates directly on you device, subscribe now.

Learn the fundamentals of Deep Learning of neural networks in Python both in theory and practice!

What you’ll learn

  • Learn step by step all the mathematical calculations involving artificial neural networks
  • Implement neural networks in Python and Numpy from scratch
  • Understand concepts like perceptron, activation functions, backpropagation, gradient descent, learning rate, and others
  • Build neural networks applied to classification and regression tasks
  • Implement neural networks using libraries, such as: Pybrain, sklearn, TensorFlow, and PyTorch

Description

Artificial neural networks are considered to be the most efficient Machine Learning techniques nowadays, with companies the likes of Google, IBM and Microsoft applying them in a myriad of ways. You’ve probably heard about self-driving cars or applications that create new songs, poems, images and even entire movie scripts! The interesting thing about this is that most of these were built using neural networks. Neural networks have been used for a while, but with the rise of Deep Learning, they came back stronger than ever and now are seen as the most advanced technology for data analysis.

One of the biggest problems that I’ve seen in students that start learning about neural networks is the lack of easily understandable content. This is due to the fact that the majority of the materials that are available are very technical and apply a lot of mathematical formulas, which simply makes the learning process incredibly difficult for whomever wishes to take their first steps in this field. With this in mind, the main objective of this course is to present the theoretical and mathematical concepts of neural networks in a simple yet thorough way, so even if you know nothing about neural networks, you’ll understand all the processes. We’ll cover concepts such as perceptrons, activation functions, multilayer networks, gradient descent and backpropagation algorithms, which form the foundations through which you will understand fully how a neural network is made. We’ll also cover the implementations on a step-by-step basis using Python, which is one of the most popular programming languages in the field of Data Science. It’s important to highlight that the step-by-step implementations will be done without using Machine Learning-specific Python libraries, because the idea behind this course is for you to understand how to do all the calculations necessary in order to build a neural network from scratch.

To sum it all up, if you wish to take your first steps in Deep Learning, this course will give you everything you need. It’s also important to note that this course is for students who are getting started with neural networks, therefore the explanations will deliberately be slow and cover each step thoroughly in order for you to learn the content in the best way possible. On the other hand, if you already know your way around neural networks, this course will be very useful for you to revise and review some important concepts.

Are you ready to take the next step in your professional career? I’ll see you in the course!Who this course is for:

  • Beginners who are starting to learn about Artificial Neural Networks or Deep Learning
  • People interested in the theory of Artificial Neural Networks
  • Undergraduate students who are studying subjects related to Artificial Intelligence
  • Anyone interested in Artificial Intelligence or Artificial Neural Networks

Course Page:_https://www.udemy.com/course/neural-networks-in-python-a-guide-for-beginners/

Download From Here – Click Me


We highly recommend you to buy the original products to support the developers!

DISCLAIMER: No Copyright Infringement Intended, All Rights Reserved to the Actual Owner. This content has been shared under Educational Purposes Only. For Copyright Content Removal Please Contact the Administrator or Email at ([email protected])

Leave A Reply

Your email address will not be published.